Ортогональное частотное разделение каналов

При передачи радиосигналов в открытом пространстве неизбежно сталкиваешься с таким паразитным явлением, как многолучевая интерференция. Эффект многолучевой интерференции заключается в том, что в результате многократных отражений один и тот же сигнал может попадать в приемник разными путями. Но различные пути распространения имеют и разные длины, а потому ослабление сигнала для них будет неодинаковым. Следовательно, в точке приема результирующий сигнал представляет собой суперпозицию (интерференцию) многих сигналов с различными амплитудами и начальными фазами, что эквивалентно сложению сигналов с разными фазами.

Следствием многолучевой интерференции является искажение принимаемого сигнала. Многолучевая интерференция присуща любому типу сигналов, но особенно негативно она сказывается на широкополосных сигналах. Дело в том, что при использовании широкополосного сигнала в результате интерференции одни частоты складываются синфазно, что приводит к увеличению сигнала, а другие, наоборот, противофазно, вызывая ослабление сигнала на данной частоте.

Говоря о многолучевой интерференции, возникающей при передаче сигналов, различают два крайних случая. В первом случае максимальная задержка между различными сигналами не превышает длительности одного символа и интерференция возникает в пределах одного передаваемого символа. Во втором случае максимальная задержка между различными сигналами больше длительности одного символа, а в результате интерференции складываются сигналы, представляющие разные символы, — так возникает межсимвольная интерференция (Inter Symbol Interference, ISI).

Наиболее сильно на искажении сигнала сказывается межсимвольная интерференция. Поскольку символ — это дискретное состояние сигнала, характеризующееся значениями частоты несущей, амплитуды и фазы, то для различных символов меняются амплитуда и фаза сигнала, поэтому восстановить исходный сигнал крайне сложно.

Чтобы избежать, а точнее, частично компенсировать эффект многолучевого распространения, используются частотные эквалайзеры, однако по мере роста скорости передачи данных либо за счет увеличения символьной скорости, либо за счет усложнения схемы кодирования эффективность их применения падает.

При скорости передачи 11 или 22 Мбит/с в случае использования CCK-кодов или пакетного сверточного кодирования схемы компенсации межсимвольной интерференции вполне успешно справляются с возложенной на них задачей, но при более высоких скоростях такой подход становится неприемлемым. Поэтому для реализации более высоких скоростей передачи в стандарте 802.11g применяется принципиальной иной метод кодирования данных, который состоит в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно на всех этих подканалах. При этом высокая скорость передачи достигается именно за счет одновременной передачи данных по всем каналам, причем скорость передачи в отдельном подканале может быть и невысокой.

Поскольку в каждом из частотных подканалов скорость передачи данных можно сделать не слишком высокой, это создает предпосылки для эффективного подавления межсимвольной интерференции.

При частотном разделении каналов необходимо, чтобы ширина каждого канала была, с одной стороны, достаточно узкой для минимизации искажения сигнала в его пределах, а с другой — достаточно широкой для обеспечения требуемой скорости передачи. Кроме того, для экономного использования всей полосы канала, разделяемого на подканалы, желательно как можно плотнее расположить частотные подканалы, но при этом избежать межканальной интерференции, чтобы обеспечить полную независимость каналов друг от друга. Частотные каналы, удовлетворяющие перечисленным требованиям, называются ортогональными. Несущие сигналы всех частотных подканалов (а точнее, функции, описывающие эти сигналы) ортогональны друг другу. Ортогональность несущих сигналов гарантирует частотную независимость каналов друг от друга, а следовательно, отсутствие межканальной интерференции.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Эта технология была заимствована из стандарта 802.11a. Для ее реализации в передающих устройствах используется обратное быстрое преобразование Фурье (IFFT), переводящее предварительно мультиплексированный на N-каналов сигнал из временного представления в частотное


Рис. 33. Реализация ортогонального частотного разделения каналов

Как уже отмечалось, одним из ключевых преимуществ метода OFDM является сочетание высокой скорости передачи с эффективным противостоянием многолучевому распространению. Если точнее, то сама по себе технология OFDM не предотвращает многолучевого распространения, но создает предпосылки для устранения эффекта межсимвольной интерференции. Дело в том, что неотъемлемой частью технологии OFDM является понятие «охранный интервал» (Guard Interval, GI) — это циклическое повторение окончания символа, пристраиваемое в начале символа. Охранный интервал является избыточной информацией и в этом смысле снижает полезную (информационную) скорость передачи. GI добавляется к отсылаемому символу в передатчике и отбрасывается при приеме символа в приемнике, но именно он защищает от возникновения межсимвольной интерференции.

Охранный интервал задает паузы между отдельными символами, и если его длительность превышает максимальное время задержки сигнала в результате многолучевого распространения, то межсимвольной интерференции не возникает.

В стандарте IEEE 802.11g технология ортогонального частотного разделения каналов OFDM является обязательной при скоростях передачи 6, 12 и 24 Мбит/с и опциональной при скоростях передачи 9, 18, 36, 48 и 54 Мбит/с .

Отметим, что в самом стандарте обязательными являются скорости передачи 1; 2; 5,5; 6; 11; 12 и 24 Мбит/с, а более высокие скорости передачи (33, 36, 48 и 54 Мбит/с) - опциональными. Кроме того, одна и та же скорость передачи может реализовываться при различной технике модуляции. Например, скорость передачи 24 Мбит/с может быть достигнута как при многочастотном кодировании OFDM, так и при гибридной технике кодирования CCK-OFDM (табл. 13).

Таблица 13. Скорости передачи,предусмотренные протоколом 802.11g.

Скорость, Мбит/с Метод кодирования
Обязательно Опционально
1 Последовательность Баркера  
2 Последовательность Баркера  
5,5 CCK PBCC
6 OFDM CCK-OFDM
9   OFDM, CCK-OFDM
11 CCK PBCC
12 OFDM CCK-OFDM
18   OFDM, CCK-OFDM
22   PBCC
24 OFDM CCK-OFDM
33   PBCC
36   OFDM, CCK-OFDM
48   OFDM, CCK-OFDM
54   OFDM, CCK-OFDM

Технология гибридного кодирования CCK-OFDM

Кроме технологии ортогонального частотного разделения каналов OFDM, для опциональных скоростей (6, 9, 12, 18, 24, 36,48 и 54 Мбит/с) может использоваться также технология гибридного кодирования CCK-OFDM.

Для того чтобы понять сущность этого термина, вспомним, что любой передаваемый пакет данных содержит заголовок/преамбулу со служебный информацией и поле данных. Когда речь идет о пакете в формате CCK, имеется в виду, что заголовок и данные кадра передаются в формате CCK. Аналогично при использовании технологии OFDM заголовок кадра и данные передаются посредством OFDM-кодирования. При применении технологии CCK-OFDM заголовок кадра кодируется с помощью CCK-кодов, но сами данные кадра передаются с использованием многочастотного OFDM-кодирования. Таким образом, технология CCK-OFDM является своеобразным гибридом CCK и OFDM. Технология CCK-OFDM не единственная гибридная технология - при использовании пакетного кодирования PBCC заголовок кадра передаётся с использованием CCK-кодов, только данные кадра кодируются с использованием PBCC (рис 34).


Рис. 34. Форматы кадров при использовании различного кодирования.

Зона покрытия

Рассматривая особенности стандарта 802.11g, мы до сих пор не касались такой важной характеристики, как радиус действия (зона покрытия) беспроводной сети. Кроме того, было бы логично сравнить IEEE 802.11g с другими популярными стандартами беспроводной связи — IEEE 802.11a и 802.11b/b+.

Говоря о зоне покрытия беспроводной сети, следует учитывать несколько обстоятельств. Во-первых, максимальное расстояние между двумя беспроводными адаптерами в значительной степени зависит от того, есть ли между ними преграды или эти адаптеры находятся в зоне прямой видимости. Радиус действия беспроводной сети зависит также от того, имеется ли в этой сети точка доступа (режим Infrastructure BSS) или же сеть функционирует в режиме Ad Hoc. Далеко не последнюю роль играет и мощность передатчика точки доступа. Поэтому понятие радиуса действия беспроводной сети довольно условно. К тому же, используя несколько точек доступа в режиме Infrastructure ESS, зону покрытия можно неограниченно увеличивать.

Если же говорить о зоне покрытия с одной точкой доступа в идеальных условиях (отсутствие преград и радиочастотных помех), то при сравнении возможностей различных беспроводных стандартов сети стандарта IEEE 802.11g оказываются и более скоростными, и более «дальнобойными», чем сети стандартов IEEE 802.11a и 802.11b/b+. Так, не уступая по своим скоростным характеристикам стандарту IEEE 802.11a, стандарт IEEE 802.11g обеспечивает такую же зону покрытия, как и стандарт IEEE 802.11b


Рис. 35.Сравнение стандартов беспроводной связи по скорости и зоне покрытия .

Если средний радиус сети стандарта IEEE 802.11a составляет 50 м, то радиус действия сетей 802.11b и 802.11g — порядка 100 м.



<< Назад Содержание Вперед >>
Hosted by uCoz